
C-MPI: A DHT Implementation for Grid
and HPC Environments

Justin M. Wozniak
Argonne National Laboratory

Argonne, IL, USA

Robert Latham
Argonne National Laboratory

Argonne, IL, USA

Sam Lang
Argonne National Laboratory

Argonne, IL, USA

Seung Woo Son
Argonne National Laboratory

Argonne, IL, USA

Robert Ross
Argonne National Laboratory

Argonne, IL, USA

Abstract

We describe a new implementation of a distributed hash
table for use as a distributed data service for grid and high
performance computing. The distributed data structure can
offer an alternative to existing checkpointing, caching, and
communication strategies due to its inherent survivability
and scalability. The effective use of such an implementation
in a high performance setting faces many challenges, in-
cluding maintaining good performance, offering wide com-
patibility with diverse architectures, and handling multiple
fault modes. The implementation described here, called
Content-MPI (C-MPI), employs a layered software design
built on MPI functionality, and offers a scalable data store
that is fault tolerant to the extent of the capability of the
MPI implementation.

1 Introduction

The objective of this work is to ease the development
of survivable systems and applications through the imple-
mentation of a reliable key/value data store based on a
distributed hash table (DHT) [18]. Borrowing from tech-
niques developed for unreliable wide-area systems, we im-
plemented a distributed data service built with the Message
Passing Interface (MPI) [27] that enables user data struc-
tures to survive partial system failure. The new service,
called Content-MPI (C-MPI), is based on new implementa-
tions of the Kademlia [19] distributed hash table, and other
hashing techniques.

DHTs offer a reliable distributed storage system for
small data objects. They allow for simple queries in a
flat key/value namespace. Server nodes in the DHT dy-
namically join together to create an overlay network that is
highly survivable, even in the presence of rapid changes in

system membership (churn). DHTs also enable fast lookups
even in large systems. Thus, many applications in both
Grid and high-performance computing (HPC) benefit from
a reusable DHT. Our system is designed to solve problems
portably, applying to both environments.

High-performance computing systems continue to grow:
currently deployed systems exceed 160,000 cores and sys-
tems exceeding 1,000,000 cores are planned. These ex-
tremely large systems with correspondingly high failure
rates resemble wide-area computing. Currently, applica-
tions use checkpointing strategies to save the full state of
a computation across fault intervals. However, this method
may not be sustainable in the near future as faults rates in-
crease with processor counts [21]. Thus, investigating alter-
native application models that are inherently survivable is a
worthwhile approach.

The checkpoint/restart model typically forces all cooper-
ating tasks to restart in the event of a relatively small fault.
This is a behavior that is not scalable in terms of system
size and corresponding fault rates, because a fault of unit
size requires work to be performed on all participating pro-
cessors.Small faults should have small impacts on appli-
cations, resulting in proportionate data movement costs to
restore redundancy schemes to a nominal state and normal-
ize the distributed data structures that enable the efficient
management of the system.

Our implementation enables the storage of critical ap-
plication data in a distributed compute-side key/value
database, achieving non-volatility through redundancy. Be-
low, we demonstrate that the data structure offers good
asymptotic performance at large scale in terms of latency
and memory usage, and is capable of enduring multiple
faults. The remainder of this paper is organized as follows.
In the next section, we consider some recent work applica-
ble to DHTs and MPI. In Sections 3 and 4 we outline design
aspects of our system and how it was implemented using

1



MPI. In Sections 5 and 6, we provide results from exper-
iments with the implementation, and we offer concluding
comments in Section 7.

2 Background

DHTs are primarily understood as a hash table that maps
keys to distributed buckets: i.e., server nodes. In common
parlance, a DHT is understood to have many additional
properties, including survivability under rapid churn, per-
formance optimizations for large, wide-area networks, and
fast lookup times.

DHTs have been used to develop many practical sys-
tems. The Kosha system [2], based on the Pastry DHT [20],
establishes a network of NFS services, providing a re-
liable, distributed filesystem. The target infrastructure
for Kosha is the size of a typical university campus net-
work: on the order of tens of thousands of cooperating
file servers. The DDNS system [8] implemented a substi-
tute for the Internet Domain Name System (DNS) for dis-
tributed name services by storing names and IP addresses
as key/value pairs in a Chord [23] network. The DDNS
system demonstrated slightly higher remote procedure call
counts for DNS lookup operations, but eased DNS admin-
istration issues such as administrator error and load balanc-
ing. A DHT-inspired routing protocol, Virtual Ring Rout-
ing (VRR) [3], routes messages to the addresses of ob-
jects or nodes on the network link layer. The technique
uses location-independent addresses to reliably locate the
destination node without flooding. Most recently, a DHT
was proposed in a cluster setting as a mechanism to con-
nect tasks together to form parallel workflows (however, the
specifics of the DHT were not described) [29].

Building a fault-tolerant data service requires a frame-
work that provides the programmer a toolkit capable of
managing potential fault conditions. In this work, we are
interested in the fault handling capabilities offered by the
underlying infrastructure, the MPI implementation, and in
providing reliability to higher-level application. The fault
handling characteristics of MPI have been extensively con-
sidered in previous work [14,16,17,26].

In the traditional scientific high-performance computing
setting, reliable numerical programming has been addressed
by FT-MPI. A primary use case [6] demonstrates how sci-
entific data structures can achieve non-volatility through
in-core, parity-based checkpointing, reducing the need for
checkpoint operations to disk. In the provided example, an
implementation of an iterative numerical algorithm, com-
munication errors were treated with coarse granularity and
allowed the programmer to jump back to a known state and
proceed with the computation. Users of FT-MPI must per-
form application-level checkpointing; that is, the applica-
tion must checkpoint its important state via calls to the FT-

MPI system.
Our project differs from these systems in multiple ways.

First, we intend to provide a fault-tolerant user data store,
and not preserve the state of a computation or in-flight mes-
sages. Second, our implementation takes the form of a data
service and associated library, not an MPI implementation.
Third, since we use an MPI implementation to provide these
services, we could potentially use a checkpoint-based fault-
tolerant MPI implementation, however, since the DHT pro-
vides its own redundancy and other fault tolerant character-
istics, we require significantly less from the MPI implemen-
tation than is provided by the full-featured solutions above.

3 Design Principles

The distributed hash table was originally targeted to
wide-area, Internet-scale systems [18]. DHT systems of-
fer a simple API equivalent to the well-known hash ta-
ble data structure:put(key,value) to store an item and
get(key) → value to retrieve a value. DHTs differ from
one another in the technique used todistributedata over the
large number of participating nodes in the system. Peer-
to-peer (P2P) DHTs decentralize the organization of the
system, creating a reliable key lookup mechanism that is
asymptotically fast in terms of the number of participating
nodes. This decentralization requires that each peer node
be able to participate in the self-organization of the system,
enabling robust reassembly in the event of node failure or
departure from the system. Additionally, each node is lim-
ited to an asympotically small amount of information about
the rest of the system.

We chose to investigate MPI as a programming model
for the DHT for practical and long-term research reasons.
Practically, building the DHT as an MPI library allows it
to be linked to codebases from the HPC tradition, devel-
oped using C, Fortran, and MPI. These application models
would have compatibility issues with typical DHT imple-
mentations developed using Java and sockets. Addition-
ally, it offers the high performance available from vendor-
specific MPI implementations. Over the long term, we in-
tend to use the DHT to investigate the ability of MPI ap-
plications to self-manage their fault tolerance, a featurethat
is not currently available in existing implementations. This
motivation is developed further in Section 4.

3.1 The DHT in the Grid

The DHT and the peer-to-peer model have previously
been applied to Grid applications. Building a distributed
data structure on the Grid can be accomplished by using
a peer-to-peer protocol such as JXTA [15]. This allows
diverse applications to dynamically form peer groups and

2



continue to communicate in the presence of network chal-
lenges, such as heterogeneous networks or firewalls. More
general messaging technologies such as SOAP [13] may
be used as well for unstructured peer-to-peer communica-
tion [10].

The DHT may then be used by the application, treating
the DHT as a layer [4]. If all cooperating components have
access to the DHT, it is a convenient location to store re-
source information for peer discovery [28]. The DHT itself
has been used as a database by GriDB [1], which provides
peer-to-peer SQL-like queries, indexed by a DHT. Grid ap-
plications can also benefit from filesystem abstractions, en-
abled by adapters such as FUSE [11]. DFS [5], for example,
connects applications to metadata links, backed by storage
blocks on existing systems.

3.2 The DHT in HPC

Many challenges remain to be overcome for the efficient
use of DHTs on real HPC systems. First, existing DHT
codes are not designed for HPC, often using programming
languages considered unsuitable for HPC, network APIs de-
signed for wide area networks, or system call interception
technologies developed primarily as research tools. Sec-
ond, the DHT concept introduces a layer of indirection in
data access that gains scalability at the expense of longer la-
tency; the performance characteristics delivered to real HPC
applications remain to be studied. Third, data overwrite is
often not supported, because of the challenging consistency
issues created by the widely decentralized mechanisms used
in many DHTs.

3.3 A Kademlia Implementation in MPI

C-MPI is built on a custom but reusable event-driven sys-
tem remote procedure call (RPC) library called MPI-RPC
that provides a programming model familiar to systems pro-
grammers. MPI-RPC allows the programmer to register lo-
cal functions for invocation by remote processes over MPI.
Using this abstraction, user routines may block while wait-
ing for the return from a call or may provide a callback
function that will be invoked upon the return. Thus, com-
plex, asynchronous applications may be developed. The
components involved in this system are diagrammed in Fig-
ure 1. The application and DHT components have access
to this system. The DHT additionally has access to a lo-
cal key/value store that is used to record DHT entries. The
whole system is accessible through a simple put/get C-MPI
API.

C-MPI provides an abstraction interface over multi-
ple hashing schemes. Multiple implementations are cur-
rently provided, including Kademlia and a modulus-based
scheme. Thus, a single application written using C-MPI can

Figure 1. Component model employed in the
MPI-based DHT structure.

experiment with the behavior of multiple DHT algorithms
without code modification.

The Kademlia DHT algorithm, developed in 2002 by
Maymounkov and Mazieres [19], has found practical ap-
plication in popular systems such as eMule [24]. Kademlia
stores user key/value pairs by hashing the keys into a 160-bit
linear address space. The space has a concept of closeness
measured by the XOR of any two addresses, interpreted as
an integer. A Kademlia instance is parameterized by two
system-wide parameters:k, the replication level, andα, the
parallelism level. Member nodes are assigned locations in
this space as well, and each node is responsible for storing a
given key/value pair if it is one of thek closest nodes to the
hash of the key. Nodes maintain neighbor tables ofk ad-
dresses for each slice of the address space that differs from
the node location by a quantity in[2i, 2i+1). Nodes may
identify the k maintainers of a given key by hashing the
key, simultaneously contacting theα nodes in the neighbor
table closest to that location, and recursively requestingthe
addresses of nodes closer to the given hash location. For a
DHT with N nodes, the tree-like search structure results in
aO(log(N)) search time, with local neighbor tables of size
O(log(N)).

3.4 MPI Dynamic Processes

C-MPI includes a Kademlia implementation which
launches each DHT member node and client exist as sepa-
rate processes which connect and communicate using MPI.
The DHT member nodes maintainhubmembers which ad-
vertise the existence of the DHT using the MPI-2 name
service functionality, publishing pre-defined names using
MPI Publish name(). After being discovered by other
member nodes, the hub nodes allow new member nodes
to join the system by accepting new connections and re-
ferring these newly connected nodes to other nodes in the

3



Figure 2. Three-way RPC handshake

hub’s neighbor table. The new node is then able to utilize
the Kademlia algorithm to integrate with the existing DHT,
build up its neighbor table, and update existing neighbor ta-
bles by connecting to one node after another.

As shown in Figure 2, the connection process involves
six steps. This process is triggered by the normal DHT
startup routines and re-entered as necessary during normal
operation as member nodes join and exit the system. In a
typical case, a new node is discovered as part of a normal
DHT lookup operation. In the MPI context, the target node
must be notified in advance by an already connected neigh-
bor that a new node would like to connect to it so that the
target node may enterMPI Comm accept(). The con-
nection technique proceeds as follows:

1© The connecting node obtains the DHT-specific ID of
the target node to which it should connect as part of a
typical search.

2© The return value of thelookup()call is the ID of a node
unknown to the connecting node. This node may have
the required data item or be closer to it, depending on
the DHT algorithm.

3© The connecting node requests alink() RPC from the
node from which it obtained this ID.

4© The linking node then issues anaccept()RPC to the
target node.

5© The linking node then issuesconnect()RPC to the con-
necting node.

6© These two nodes return success to the linking node and
then connect by calling into MPI-2 functionality.

* Using normal MPI-RPC functionality, they exchange
ID information, updating each neighbor table.

At this point, the connecting node and the accepting node
are available for normal operation and may be used as link-
ing nodes for each other by other DHT nodes.

While this technique relies only on MPI for multipro-
gramming and does not involve more than one node in any
communicator, it has multiple unaddressed fault modes. For
example, a connecting node could fail, leaving the accept-
ing node stuck in a call toMPI Comm accept(). More-
over, implementing MPI name service functionality in a re-
liable way is a challenging problem in itself [9], and may
have a variety of fault modes depending on the implemen-
tation.

4 Toward Reliable MPI-based Services

Application codes routinely use MPI for data exchange
and parallel programming, but rarely if ever does system
software use MPI. A previous study of MPI from the per-
spective of parallel filesystem development [16] covered
three primary topics: service discovery and connection, col-
lectives, and fault tolerance. The MPI name service and
dynamic process features were proposed as an infrastruc-
ture to automate the integration of a network of file servers
and connected clients. Predefined collectives as provided
by MPI were shown to be potentially useful in many par-
allel filesystem operations, such as the creation of objects
on multiple servers. Fault tolerance, however, was a more
difficult problem.

4.1 The DHT Approach

The DHT model provides a reliable scheme to handle
faults in a storage network but relies on underlying fault
handling functionality. Existing DHT implementations typ-
ically obtain this functionality as provided by Java sockets
or a similar API. These network abstractions provide several
key features to enable the reliable construction of DHTs,
such as timeouts on connection methods and recovery from
communication errors - features not currently available to
the MPI programmer.

Our work proposes a middleware solution for this prob-
lem. First, we isolate fault handling under well-defined lay-
ers familiar to developers of networked applications. Sec-
ond, we provide a reliable store for higher-level systems
such as filesystems, databases, or application data struc-
tures. If the MPI implementation allow us to isolate and
dispose of faulty communicators or respond to other fault
cases, we could immediately make use of this functionality
in our system. Our reliable store could then be used by a
variety of application types. In particular, loosely-coupled
applications could be built to use the DHT as a reliable,
shared tuple space, similar to the functionality offered by
PVM persistent messages. Such a system would allow for

4



Figure 3. Components and interactions of in-
terest in a generic MPI-based service.

the disposal and restart of compute tasks and DHT member
tasks, providing a highly fault-tolerant computing model.

4.2 The DHT as a System Component

Figure 3 illustrates a generic framework for the construc-
tion of MPI-based services. In this model, a user code
makes use of the service by interacting with a service client,
as well as possibly using MPI directly. The system is frag-
mented intoapplication environments, consisting of user
computation processes, andservice environments, consist-
ing of system processes. Service environments may be per-
sistent across multiple executions of user tasks. Applica-
tion environments correspond to typical compute node set-
tings, whereas service environments correspond to typical
file servers or database servers.

Four interactions of interest to MPI are denoted with let-
ters:

A.) The interaction between the user code and the service
client. This could be performed via linking, a shell
command, or a MPI dynamic process connection.

B.) Interaction among clients. These MPI operations could
correspond to collective I/O operations.

C.) Client-server interactions. These connections are
likely made via dynamic process operations, but they
could be instantiated inside a monolithic MPI execu-
tion if services are not persistent.

D.) Server-server interactions. Similar to client-serverop-
erations, services may cooperate dynamically or as

part of a monolithic communicator.

As a specific example, our DHT implementation makes
use of interactions A, C, and D. DHT clients do not interact
directly.

The service environments consist of DHT member
nodes. During system initialization, DHT member pro-
cesses are started as unitary MPI programs. These jobs dy-
namically discover each other using the MPI name service
and connect via dynamic process functionality. They then
use pairwise intercommunicators [14] to build up a redun-
dant overlay network. User applications make use of the
DHT client software, selecting from multiple possible use
cases. The service client is currently implemented as a li-
brary, and it uses MPI to connect to one or more services.
This client-server discovery is based on the MPI name ser-
vice and results in a connection via dynamic process func-
tionality.

5 Use Case: HPC Setting

In this section, we will study four test cases using a the
DHT as a simple database for a hypothetical application,
similar to the usage of a Linda system [12]. Consider a
user application that performs relatively many small com-
putations and inserts the small results into the DHT-based
database to avoid congesting a shared file system with small
operations. Each logical key/value pair is to be written by
the application exactly once, but since the DHT stores mul-
tiple replicas of each key, the output data is relatively per-
sistent compared to the MTTF of a single node. At the end
of all computations, the DHT contents could be streamed
into a large output file.

5.1 Setup

TEST-RPCmeasures the number of RPC message-pairs
used to obtain the MPI ranks responsible for storing a key
for the DHT. For each DHT size, one client inserted 4 data
items into the DHT at a replica count of 3. The number
of RPCs required to perform the DHT lookup to obtain the
target site for the insertion was recorded and plotted. These
asynchronous search RPCs are parallelizable in accordance
with the Kademlia parameterα, as discussed above.
TEST-TABLEmeasures the average size of the neighbor

table employed by a member node. For each DHT size,
the DHT was started and 4 data items were inserted. The
average size of the neighbor table used by each node was
recorded.
TEST-RATE measures the insertion rate offered by a

DHT of increasing size. For each possible DHT sizeN ,
a number of clients totalingN/2, N , and2N were started.

5



10 100 1000
DHT size

0

5

10

15

20

Q
ue

rie
s 

pe
r 

pu
t(

)

Figure 4. TEST-RPC

Each then began inserting 1000 20-byte key/value pairs si-
multaneously (after a call toMPI Barrier()) and the in-
sertion rate was recorded and the average rate was plotted.
TEST-FAULT measures the availability of a given key

as the probability that a key may be found in the DHT af-
ter a number of member node failures. For each DHT size
N , one client insertedN data items at a replica count (k)
of 3. Then an increasing number of faults were emulated
by the system, implemented by modifying the event engine
layer. The number of data items that could be retrieved from
the system in this faulty state was recorded and plotted as a
percentage.

The 5,832-core SiCortex at Argonne National Labora-
tory was used in each experiment, which offers small mes-
sage latency near1µs and large message bandwidth of up to
4 GB/s [22]. The SiCortex provides an MPI implementation
based on MPICH2. Each of these tests was performed for
the Kademlia-based DHT implementation, which was mod-
ified to operate withinMPI COMM WORLD due to the lack of
MPI-2 dynamic process functionality on the SiCortex. Each
test was repeated 5 times and the results were averaged.

5.2 Results

TEST-RPC shows that the data structure is scalable in
terms of the number of RPCs required for its operation
at sizes up to 1000 DHT member nodes. This indicates
that the structure is a promising solution for a simple, dis-
tributed, large-scale compute-side database, as it maintains
logarithmic performance.TEST-TABLE shows that the
neighbor table size is also very small compared to the sys-
tem size. Each neighbor table entry consists of less than 1
kilobyte of information (not including MPI communicator
implementation overhead). Thus, in practice, larger neigh-
bor tables would likely be used to improve performance for

10 100 1000
DHT size

0

5

10

15

20

N
ei

gh
bo

rs

Figure 5. TEST-TABLE

10 100 1000
DHT size

0

20000

40000

60000

80000

1e+05

In
se

rt
io

ns
/s

ec
on

d
2.0 clients/node
1.0 clients/node
0.5 clients/node

Figure 6. TEST-RATE

10 100 1000
DHT size

70

80

90

100

A
va

ila
bi

lit
y 

(%
)

0 faults
1 faults
2 faults
4 faults
8 faults

Figure 7. TEST-FAULT

6



Figure 8. TEST-CLUSTER configuration

Table 1. Performance results in
records/second for cluster setting.

Nodes: 4 8 16 24 30
Records: 200K 200K 352K 432K 480K
FS: 1114 1722 3968 5637 6584
DHT: 2461 4624 9119 12,926 15,533

searches.TEST-RATE shows that the insertion rate scales
well as expected by the limited number of RPCs reported
in TEST-RPC. Additional time overhead measured by this
test includes the local neighbor table searches and mem-
ory operations involved in moving the key/value pairs. This
implementation is also resilient to large numbers of em-
ulated faults as shown inTEST-FAULT. Although 100%
data availability is not guaranteed in cases with more faults
than replicas, it is unlikely that all replicas will be hit bya
given fault set, and the lookup procedure itself is reliable.
Larger systems are capable of very high reliability, and per-
formed perfectly in the batch of tests reported here.

6 Use Case: Cluster Setting

In this section, we will demonstrate the use of the C-MPI
DHT in a cluster setting. Many applications cannot be re-
linked with the C-MPI client library, but the cluster tools
are available. As shown in Figure 8, this use case involves
multiple steps. First, the user allocates compute nodes from
the cluster using ordinary techniques for the given cluster,
and submits C-MPI as an MPI job. Second, the batch of
single-process user tasks is submitted, and these jobs attach
to DHT nodes using local IPC. Third, communication is
enabled through the key/value mechanism provided by C-
MPI. This is implemented to appear as ordinary filesystem
operations in the user script. Fourth, application output is
written out to stable storage such as a network file system.

This method is proposed as a way to quickly integrate
high-speed IPC into an existing batch application. Typical
applications use wrapper scripts to set up access to input and
output data sources. In our experimental use case below,
only one modification is made to the user script; to change
the invocation of the standard/bin/cp to the invocation
of the C-MPI toolcmpi-cp. This tool chunks files into
small pieces and distributes them throughout the DHT; for
the small files in this case, only one chunk was used per file
in addition to a metadata chunk.

6.1 Setup

In this experiment the user script was submitted as de-
scribed in the cluster setting. The batch of user scripts
can communicate in two ways, through the use of small
files (FS) or through C-MPI (DHT). The script randomly
switches between reading and writing small records of ap-
proximately 8 bytes. To demonstrate the additional ability
of the C-MPI abstraction to use different underlying DHTs,
in this case, a simple hashing scheme was used to locate and
store 3 replicas of each record.

This batch was executed on the Breadboard cluster at Ar-
gonne National Laboratory. The compute nodes used were
a heterogeneous mix including Dual AMD Opteron Dual
Core nodes, Dual Intel Xeon Quad Core nodes, and Dual
Intel Nehalem Quad Core nodes, all running Linux 2.6.27.
In the FS case, the nodes shared access to an NFS server,
upon which they exchanged small the records as files. In
the DHT case, the processes used C-MPI running on the
MPICH2 1.2.1p1 release.

Batches were executed as diagrammed in Table 1. Each
node count, from 4 to 30, was associated with a number of
records to read and write for communication. For each case,
FS or DHT, the script was timed as it performed the given
workload; loop overhead and local operations were below
3% of the total run time for any case. The results are shown
as record operations/second.

6.2 Results

As shown in the table, both methods show the ability to
scale in data access rate with additional processes. This in-
dicates that the NFS server was not overloaded at this scale.
However, the DHT exceeded the FS access rate by just over
a factor of 2 in each case. Combined with the previous re-
sults from the HPC setting, this indicates that the C-MPI
system is a promising direction for extremely large clusters.

More generally, these results also indicate that a user-
space, local-cluster storage infrastructure built on high-
performance technologies may be accessed through stan-
dard grid techniques.

7



7 Conclusion

A reliable key/value data store was proposed as a tool
in the development of fault-tolerant systems and applica-
tions. A new implementation of the Kademlia DHT on MPI
was demonstrated to provide these performance, scalabil-
ity, and reliability characteristics. Additionally, thissystem
provides a reference point for interesting issues with the de-
velopment of MPI systems, particularly in fault tolerance.
Future work on this system is needed to enable ease of use
and compatibility with existing applications. A filesystem
interface could be developed by using an adapter such as
FUSE [11] or Parrot [25]. This would enable user appli-
cations to benefit from the system without modification or
user scripts.

The C-MPI implementation is an open source project,
available on SourceForge [7].

Acknowledgments

This research is supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Dept. of Energy under Contracts DE-AC02-06CH11357.
Work is also supported by DOE with agreement number
DE-FC02-06ER25777.

References

[1] M. Abdallah and L. Temal. GriDB: A scalable distributed
database sharing system for grid environments. InProc. Ad-
vances in Computer Science and Technology, 2004.

[2] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha:
A peer-to-peer enhancement for the network file system. In
Proc. SC’04, 2004.

[3] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and
A. Rowstron. Virtual ring routing: Network routing inspired
by DHTs. InProc. SIGCOMM, 2006.

[4] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarcay,
S. Shenker, and J. Hellerstein. A case study in building lay-
ered DHT applications. InProc. SIGCOMM, 2005.

[5] A. Chazapis, G. Tsoukalas, G. Verigakis, K. Kourtis,
A. Sotiropoulos, and N. Koziris. Global-scale peer-to-peer
file services with DFS. InProc. International Conference
on Grid Computing, 2007.

[6] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra. Fault tolerant high performance
computing by a coding approach. InProc. Symposium on
Principles and Practice of Parallel Programming, 2005.

[7] C-MPI page on SourceForge.
https://sourceforge.net/projects/c-mpi.

[8] R. Cox, A. Muthitacharoen, and R. T. Morris. Serving DNS
using a peer-to-peer lookup service. InProc. International
Workshop on Peer-to-Peer Systems, 2002.

[9] D. Dewolfs, J. Broeckhove, V. Sunderam, and G. E. Fagg.
FT-MPI, fault-tolerant metacomputing and generic name
services: A case study. InProc. Euro PVM/MPI, 2006.

[10] G. Fox, D. Gannon, S.-H. Ko, Sangmi-Lee, S. Pallickara,
M. Pierce, X. Qiu, X. Rao, A. Uyar, M. Wang, and W. Wu.
Grid Computing: Making the global infrastructure a reality,
chapter Peer-to-peer Grids. Wiley, 2003.

[11] FUSE: Filesystem in userspace. http://fuse.sourceforge.net.
[12] O. Gatibert. YLC, a C++ Linda system on top of PVM. In

Proc. Euro PVM/MPI, 1997.
[13] S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis,

Y. Nakamura, and R. Neyama.Building Web Services with
Java: Making Sense of XML, SOAP, WSDL, and UDDI.
Pearson Education, 1 edition, 2001.

[14] W. Gropp and E. Lusk. Fault tolerance in MPI programs.J.
High Performance Computing Applications, 18(3), 2004.

[15] JXTA web site. http://jxta.kenai.com.
[16] R. Latham, R. Ross, and R. Thakur. Can MPI be used for

persistent parallel services? InProc. Euro PVM/MPI, 2006.
[17] C. Lu and D. A. Reed. Assessing fault sensitivity in MPI

applications. InProc. SC’04, 2004.
[18] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.

A survey and comparison of peer-to-peer overlay network
schemes. IEEE Communications Surveys and Tutorials,
7(2), 2005.

[19] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metric. InProc.
Workshop on Peer-to-peer Systems, 2002.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location and routing for large-scale peer-to-peer
systems. InProc. Middleware, 2001.

[21] B. Schroeder and G. A. Gibson. A large-scale study of fail-
ures in high-performance computing systems. InProc. Dis-
tributed Systems and Networks, 2006.

[22] SiCortex, Inc. SC5832 data sheet. http://www.sicortex.com,
2009.

[23] I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup protocol
for internet applications. InProc. SIGCOMM, 2001.

[24] D. Stutzbach and R. Rejaie. Improving lookup performance
over a widely-deployed DHT. InProc. INFOCOM, 2006.

[25] D. Thain and M. Livny. Parrot: Transparent user-level mid-
dleware for data-intensive computing. InProc. Workshop on
Adaptive Grid Middleware, September 2003.

[26] R. Thakur and W. Gropp. Open issues in MPI implementa-
tion. In Proc. Asia-Pacific Computer Systems Architecture
Conference, 2007.

[27] The MPI Forum. MPI-2: Extensions to the Message-Passing
Interface, 1997.

[28] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mor-
dacchini, M. Pennanen, K. Popov, V. Vlassov, and S. Haridi.
Peer-to-Peer resource discovery in Grids: Models and sys-
tems.Future Generation Computer Systems, 23(7), 2007.

[29] E. Walker, W. Xu, and V. Chandar. Composing and execut-
ing parallel data-flow graphs with shell pipes. InWorkshop
on Workflows in Support of Large-Scale Science at SC’09,
2009.

8



Notice

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(”Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of
the Government.

9


